SPASE Query Language (SPASEQL)
http://spaseql.gsfc.nasa.gov

Description and Rationale

The Heliophysics data environment (HPDE) is comprised of several domain
specific Virtual Observatories (VxOs). Each VxO focuses its efforts on the types of
data and research unique to its domain. However, many pertinent research
questions demand resources from multiple domains. As such, it would be beneficial
for the HPDE to implement a means for the VxOs, as well as added-value services, to
communicate with each other in a standardized manner. This is the goal of the
SPASE Query Language (SPASEQL).

SPASEQL is based on the SPASE metadata model. SPASE has become an
integral part of the HPDE, and is the basis for most descriptions of data resources.
The intent is to carry this familiarity over into developing a standardized means of
asking and answering questions. SPASEQL is simply the mechanism for
standardizing the messaging between VxOs; it is implementation neutral. The query
language does not dictate how queries are to be executed. This means that the VxOs
use their domain expertise and existing infrastructure to execute queries. SPASEQL
provides a front-end to each VxO that allows them to speak the same language to
each other.

The number of VxOs is not overwhelming and the point can be made for
learning the unique interfaces of each rather than developing a standardized
language. However, this has several drawbacks. The resulting software libraries
are dependent on the VxO interfaces remaining static. A change to an interface
breaks communications. SPASEQL is a static front end to a VxO. The underlying
Vx0 can change, as mandated by its community, however, the interface other VxOs
see remains unchanged.

A second concern is the diversity and complexity of underlying data
resources. This is evidenced in the ongoing evolution of SPASE. Thus, for each
search capability a VxO implements (granules, spacecraft positions, time periods,
etc.), it must have a corresponding means of formatting and packaging the results
(the results message structure) for its API. As a result, interacting with VxO APIs
scales not with the number of VxOs but rather with the total number of search
capabilities. Ifleft to develop independently, similar search capabilities at multiple
Vx0Os will undoubtedly be returned via varying means. Thus, a granule search at one
Vx0 may not be directly interoperable with a granule search at another Vx0. This
makes the integration of multiple VxO results a formidable challenge.

Rather than each VxO developing independent standards for creating
response messages it makes sense to leverage the existing SPASE model. This
model already contains agreed upon terminology and definitions that have resulted
from years of hard work. SPASE already serves as common parlance for data
descriptions. This capability can be extended into a common language for VxOs who

are discussing these data descriptions. This makes the usage of the HPDE, as a
collective whole, a much easier task.

Costs, Ease of Use, and Benefits

SPASEQL can lead to rapid development and reduced costs. Having a
standardized communications language means that a question can be asked the
same way from one domain to the next. As a result, software can be reused and
queries can be saved and re-executed when needed. This leads to easier integration
of VxOs and services. It also allows for the potential chaining of VxOs. That is, if we
are speaking the same language, the results of one VxO query can easily be
transformed into the constraints of a query to another Vx0. Overall, SPASEQL
should lead to reduced costs, reuse, and easier integration of the HPDE components.

Implementing SPASEQL does involve some costs. SPASEQL is a front-end
that standardizes communications. The underlying VxO must be able to transform
SPASEQL queries to execute on its underlying systems. The cost of this effort varies
from VxO to VxO and from service to service. Itis a function of the complexity and
capabilities of the VxO or service. For example, VxOs implementing SQL databases
(e.g. VITMO, VHO, and VMO/G) may find it difficult to transform complex SPASEQL
queries into meaningful SQL queries. On the other hand, a simple plotting service
can only accept very specific SPASEQL queries and may find it trivial to implement.

Additional costs come in the form of retrofitting existing services and VxO
APIs, such as VSO who has a fully functioning API and predates SPASE. While
SPASEQL can be used for such sites their owners will need to weigh the time and
costs in retrofitting existing infrastructure.

Scope

SPASEQL will not handle all components of the HPDE. There will exist things
outside the purview of SPASE, and ultimately SPASEQL. Some functionality will
have to be implemented by other means. However, SPASEQL does address the basic
set of questions that VxOs and services need to ask each other. As a first order
interoperability agent it can go a long way in uniting the capabilities of the HPDE.
Vx0 provided science use cases will help in defining the scope of SPASEQL.

Some possible use cases that have emerged from the HDMC are:

VSPO will serve as a global repository of resources. SPASEQL can serve as the
means for VSPO to harvest new/modified metadata from the VxOs. In a similar
fashion, VSPO can provide a SPASEQL interface by which others can collect and
browse the metadata of specific VxOs.

Vx0 to VxO communication in order to answer user queries that span multiple
domains. Each VxO aggregating information about other domains is redundant and
wastes resources. SPASEQL will allow VxOs to take advantage of other domain
Vx0s’ expertise

Providing a standard means for VxOs to communicate with added-value services.
Anatomy of Query and Response Messages

The Query

<?xmlversion="1.0"?>

<SPASEQL xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.spase-group.org/spasegl/Response http://spaseql.gsfc.nasa.gov/schema/spaseql_query.xsd"
xmins:Query="http://www.spase-group.org/spaseql/Query"

xmins="http://www.spase-group.org/spasegl/Query”>

<SPASEQL_Version>1.0</SPASEQL_Version> The “Context” block provides
<Context> historical information such as when

<RequestTime>2008-01-01T00:00:00Z</RequestTime> | the query was created by whom and
’ ’

<Destination>spase://vmo.nasa.gov</Destination> : 2
<Origin>spase://vwo.nasa.gov</Origin> were it was intended to go.

</Context>

<Request> “Select” allows the user to specify what

<Select>
<SPASEQLTerm>GranuleURL</SPASEQLTerm> _ they would like returned. This is a

</Select> controlled enumeration list
<Where>

<Clause ID="Term1" LogicalOperator="and">

<Expression>

<ParentID><Equal>spase://VMO/NumericalData/Example</Equal></ParentID>
</Expression>

<Expression>
<ResourceType>Granule</RedourteType> “Where” allows us to specify what

SRR When multiple “Expressions” conditions must be true. Here we are
</Clause> . h é5) asking for Resources that are Granules
</Where> are given the LogicalOperator e
</Request> attribute specifies how to and also have the parent indicated by
bi h the ParentID
</SPASEQL> combine them

Queries are expressed in XML and are of the form: SELECT X WHEN Y is true.
They are somewhat analogous to SQL queries. The query has two parts - Context
and Request. Context contains general information about when the query was
submitted, who submitted it, and where it was intended to go. This section is
intended for logging and archiving of queries.

The Request section contains the actual query request. The <Select> tag indicates
what the user would like returned. In this case, the user is asking for Granule URLs.
Servers may not be able to answer all possible <SPASEQLTerm> values. A SPASE
Service description should be available for each service and this file will describe the
capabilities of the service and which values it accepts. It should be noted that
multiple <SPASEQLTerm> elements are allowed. Thus, a user can ask for any
number of return items.

The <Where> element contains the restriction. This query states that the user
would like Granule URLs when two conditions are true. In this case the user would

like the Granule URLs for the NumericalData Resource with
resourcelD=spase://VMO/NumericalData/Example

This particular query contains one Clause element. The SPASEQL schema does
allow complex queries to be formed by using multiple Clause elements. Consult the
schema for more details.

The ambiguity of “and”

When constructing queries with multiple Clauses simply joining Clauses with “and”
can be ambiguous. “And” does not specify enough information. The user could want
the conditions to occur at the same time. Instead, the user could be asking that the
conditions occur not only at the same time, but also within the same data product.

In order to remove this ambiguity SPASEQL allows the attribute
“conditionsOccurAt” with values "atSameTimelnSameProduct” and

“atSameTime". Developers interested in complex queries should consult the schema
for proper usage of this attribute.

The Response

<?xml version="1.0"?>

<SPASEQL xmins:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.spase-group.org/spaseql/Response http://spaseql.gsfc.nasa.gov/schema/spaseql_response.xsd”
xmins:Query="http://www.spase-group.org/spasegl/Query”

xmins="http://www.spase-group.org/spaseql/Response">

<ResponseContext>

<QueryReceived>2008-01-01T00:00:00Z</QueryReceived>

<ExecutionDuration>PT1M</ExecutionDuration> This tells the user when the service

<ExecutedBy>spase://vho.nasa.gov</ExecutedBy> received the query and how long it took
<QueryOrigin>spase://vwo.nasa.gov</QueryOrigin> to execute. Itis purely informational
</ResponseContext> E
for logging.
<Query>
<Query:Request>
<Query:Select>

<Query:SPASEQLTerm>GranuleURL</Query:SPASEQLTerm>
</Query:Select>
<Query:Where>
<Query:Clause ID="Term1" LogicalOperator="and">
<Query:Expression>
<Query:ParentID><Query:Equal>spase://VMO/NumericalData/Example</Query:Equal></Query:ParentID>
</Query:Expression>

<Query:Expression> w . 3
<Query:ResourceType>Granule</Query:ResourceType> The ongmal query Is repeated in the
</Query:Expression> response. The SPASEQL software library
</Query:Clause> .
</Query:Where> takes care of storing the query and
</8uerv:Request> rewriting it in the response. Services
< ery> . .
PR can exploit this feature of the reusable
library.

<ResultSet>

<Result>
<GranuleURL>http://url/tofsome/file/1</GranuleURL>
</Result>

<Result>
<GranuleURL>http://url/to/some/file/2</GranuleURL>
</Result>

<Result>
<GranuleURL>http://url/to/some/file/3</GranuleURL>
</Result>

<Result>
<GranuleURL>http://url/to/some/file/4</GranuleURL>
</Result>

<Result>
<GranuleURL>http://url/to/some/file/5</GranuleURL>
</Result>

The results portion of the
response. The user asked for
</SPASEQL> granule URLs which are provided
in the “ResultSet”. The values that
can be asked to be returned are
controlled by the SPASEQL schema

</ResultSet>

The response message has three parts. First, there is a similar context
section detailing the execution of the query. Second, the query is repeated. This is
so that users who wish to save and reuse queries have all the needed information in
one message. The user does not need to save the query and response as a pair. For
convenience the response message contains the results and the original query. The
SPASEQL software library takes care of storing and rewriting the original query.
Thus, this feature does not need to be reinvented by each service.

Finally, the <ResultsSet> element contains the results. Each resultis placed in a
<Result> element using a predefined name from the SPASEQL enumeration list.

Configuration

SPASE is a large and complex data model. Clearly, the VxO and services using
SPASEQL will not be able to implement all of it. To accommodate this we created a
configuration file based on the SPASE Service description. An example of this
configuration can be found at http://spaseql.gsfc.nasa.gov/services/ This
configuration file is compared against incoming queries to determine if the service
is capable of answering the query.

Within the configuration file the “SelectOption” tells the service, and the user,
what values can be used in the “SPASEQLTerm” portion of the query. The allowed
values are: TimeSpan, GranuleURL, ProductID, GranulelD, InstrumentID,
ObservatoryID, and MetadataURL. If TimeSpan is selected then the response
“Result”’s must have “StartDate” and “StopDate” elements.

Assumptions built into the SPASEQL language

Two SPASEQL attributes are optional. There are cases when they attributes are
needed but are not supplied by the user. In such cases, services need to make
assumptions. Built into the SPASEQL language are the following assumptions:

1.) if “conditionsOccur” is not specified a default value of
“sameProductAtSameTime” will be used by services.

2.) If “LogicalOperator” attribute of “Where” is need and not supplied then
services will assume “and”.

Java Implementation

As each VxO and service will implement queries in their own particular way
SPASEQL is implementation neutral. What we can provide are tools to send, receive,
validate and assist in response creation. The SPASEQL Java code accomplishes this.
We have attempted to assist as much as possible, however, each service will need to
carry out the execution on their own.

In terms of query transmission we are currently using HTTP POST and
assuming queries are written to XML once received by the server.

ServiceFunctions.java in the util/ package provides basic service
functionality that can be reused by new services:

// Object that performs basic service features

ServiceFunctions service = new ServiceFunctions ();

SPASEQuery query = service.validate(schema, queryFile,
config, responseFile);

Context context = service.createContext(servicelD,
responseFile, query);

CreateResponse response = new CreateResponse ();

boolean errors = service.hasErrors(query);

In this example, we create a query object and validate the
incoming query against both our service description (to see if we
are able to answer it) and the SPASEQL schema (to ensure that it
1s valid SPASEQL). The reusable code then fills in the Context
portion of the response message when we provide our serviceID and
query. Finally, we check for errors during the validation before
proceeding. Other reusable features of the SPASEQL library (not
i1llustrated here) are a results parser and code to assist in
creating the resultSet - see the response package.

Because SPASEQL allows complex subqueries, such as
((A and B) or (C and D))

the query is returned as a list of lists. We can access the lists with:

System.out.println("The input query was...");

// access to the original query
System.out.println(query.xmlQuery);
System.out.println();

// loop through query components and execute them
for (int i=0; i<query.numClauses; i++) {

// Remove the next query object
Object o = query.clauses.removeFromFront();
// Determine if this is a complexClause or just a clause
if (o instanceof Clause) {
Clause currentClause = (Clause) o;
while (!clause.expressions.isEmpty()) {
Expression expression = (Expression) clause.expressions.removeFromFront();

String[] constraints = constraint.getConstraint(expression);
System.out.println(expression.name + " " +
+ constraints[1] + " inclusive="+
constraints[2]);

non

Constraints[0] +

Service Creation Guidelines

It is encouraged that service creators provide both command line and object
execution methods for their services. This ensures wider usage of the service as
users can execute the service from the command line or use the Java objects to
incorporate the service into their own code. Source code examples for existing
services can be found at http://spaseql.gsfc.nasa.gov/services/

